Specifications

• Width 8” to 24”
• Length 54” to 240”
• Profile 1.89” high
• Drive Pulley 1.31” Diameter
• Load Carrying Capacity to 125 lbs.*
• Speed Range up to 225 fpm
• Multiple cleat heights available

*See Technical Data on page 79

Overview Dimensions

Note: As in all industries, technical specifications will change with technology updates. Please contact factory or see www.qcindustries.com for the most up-to-date drawings.
Features & Benefits

Conveyor

- **Low profile design** provides tight product transfers and the ability to fit into space-constrained areas.
- Single piece 10-gauge steel framework is laser cut and formed to create a single-body frame construction, ensuring frame integrity.
- **Tight tolerance belting** and our unique snap-out sealed tail assembly provide for a quick belt change (less than 5 minutes) that is normally achieved without having to remove the drive packages or side rails.
- **Fixed angles ranging from 30° to 90°** minimize the number of required components, reducing costs as well as providing an industry best load carrying capacity.
- **High tensile strength cleated belts** offer superior strength-to-weight ratio and are available in various styles and heights. Cleats are always high frequency welded to customer desired spacing and never glued to the top surface of the belt.
- All components in our conveyors are produced on state-of-the-art manufacturing equipment.

Tail Assembly

- **Single point belt tension** is achieved through a snap-in eccentric tail assembly designed to pull through the natural elongation characteristics of the belt and provide quick and easy belt change capacity.
- **Crowned sealed tail assembly** is designed to promote excellent belt tracking and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the tail assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Grease fitting design in the tail assembly allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed tail assembly, providing optimal conditions to move the heaviest loads in low profile conveyors.
- Eccentric tracking bushing allows for single point tracking control at the idler end of the conveyor.

Drive Assembly

- **Straight knurl design used to prevent premature wear** on the carcass of the belt and still provide superior grip to overcome start-up inertia.
- **Crowned sealed drive assembly** designed to promote superior belt tracking, and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the drive assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Discreet needle fitting lubrication points in each bearing housing allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed bearing assemblies that are piloted on body fitted studs, providing optimal conditions to move the heaviest loads in low profile conveyors.
- **Threaded tracking adjustment points** provide simple responsive belt tracking that retain settings, even during belt removal.
- Drive pulley is available in solid output design and dual output design.

Z Track

- **Patent pending Z Track™** is a unique design of the angle idler assembly that offers users a way to gain control over belt tracking at the angles of incline or decline.
- **Z Track™** adjusts rapidly for belt installation and tracking adjustments at the angles of incline or decline and locks in the tracking setting to ensure long-term performance.
- **Z Track™ components** are precision manufactured and produced as a pressed, sealed-for-life assembly that is well-guarded to avoid dangerous pinch points at the angles of incline or decline.

Multiple cleat sizes and styles available
See page 81 Step 5 for options

Corrugated sides available with 1 inch cleats

• Low profile design
• Single point belt tension
• Crowned sealed tail assembly
• Grease fitting design
• Precision bearing alignment
• Z Track™

• Patented Z Track
• Multiple cleat sizes available
• Corrugated sides available
• Multiple options

QC Industries 513.753.6000

69
Specifications

• Width 8” to 24”
• Length 36” to 240”
• Profile 1.89” high
• Drive Pulley 1.31” Diameter
• Load Carrying Capacity to 125 lbs.*
• Speed Range up to 225 fpm
• Multiple cleat heights available

*See Technical Data on page 79

Overview Dimensions

Note: As in all industries, technical specifications will change with technology updates. Please contact factory or see www.qcindustries.com for the most up-to-date drawings.
Features & Benefits

Conveyor
- **Low profile design** provides tight product transfers and the ability to fit into space-constrained areas
- Single piece 10-gauge steel framework is laser cut and formed to create a **single-body frame construction**, ensuring frame integrity
- **Tight tolerance belting** and our unique snap-out sealed tail assembly provide for a **quick belt change** (less than 5 minutes) that is normally achieved without having to remove the drive packages or side rails
- **Fixed angles ranging from 30° to 90°** minimize the number of required components, reducing costs as well as **providing an industry best load carrying capacity**
- **High tensile strength cleated belts** offer superior strength-to-weight ratio and are available in various styles and heights. Cleats are always **high frequency welded** to customer desired spacing and never glued to the top surface of the belt
- All components in our conveyors are produced on **state-of-the-art manufacturing** equipment

Tail Assembly
- **Single point belt tension** is achieved through a **snap-in eccentric tail assembly** designed to pull through the natural elongation characteristics of the belt and provide quick and easy belt change capacity
- **Crowned sealed tail assembly** is designed to promote excellent belt tracking and is equipped with **superior needle bearings with seals** that are filled with high performance grease
- **Thrust washers** designed into the tail assembly provide axial float, which allows the assembly to move with the natural camber of the belt and **protect bearings against off-center load conditions**
- Grease fitting design in the tail assembly allows for lubrication of bearings while the conveyor is running, resulting in **zero down time during lubrication**
- **Precision bearing alignment** is guaranteed within the pressed tail assembly, providing optimal conditions to **move the heaviest loads** in low profile conveyors
- Eccentric tracking bushing allows for **single point tracking control** at the idler end of the conveyor

Drive Assembly
- **Straight knurl design used to prevent premature wear** on the carcass of the belt and still provide superior grip to overcome start-up inertia
- **Crowned sealed drive assembly** designed to promote superior belt tracking, and is equipped with **superior needle bearings with seals** that are filled with high performance grease
- **Thrust washers** designed into the drive assembly provide axial float, which allows the assembly to move with the natural camber of the belt and **protect bearings against off-center load conditions**
- Discreet needle fitting lubrication points in each bearing housing allows for lubrication of bearings while the conveyor is running, resulting in **zero down time during lubrication**
- **Precision bearing alignment** is guaranteed within the pressed bearing assemblies that are piloted on body fitted studs, providing optimal conditions to **move the heaviest loads** in low profile conveyors
- **Threaded tracking adjustment points** provide simple responsive belt tracking that retain settings, even during belt removal
- Drive pulley is available in **solid output design** and **dual output design**

Z Track
- **Patent-pending Z Track™** is a unique design of the angle idler assembly that offers users a way to **gain control over belt tracking at the angles of incline or decline**
- **Z Track™** adjusts rapidly for belt installation and tracking adjustments at the angles of incline or decline and **locks in the tracking setting** to ensure long-term performance
- **Z Track™** components are precision manufactured and produced as a **pressed, sealed-for-life assembly** that is well-guarded to avoid dangerous pinch points at the angles of incline or decline

Multiple cleat sizes and styles available
See page 81 Step 5 for options
Specifications

Note: As in all industries, technical specifications will change with technology updates. Please contact factory or see www.qcindustries.com for the most up-to-date drawings.

Overview Dimensions

- Width 8" to 24"
- Length 36" to 240"
- Profile 1.89" high
- Drive Pulley 1.31" Diameter
- Load Carrying Capacity to 125 lbs.*
- Speed Range up to 225 fpm
- Multiple Cleat Heights Available

*See Technical Data on page 79
Features & Benefits

Conveyor

- **Low profile design** provides tight product transfers and the ability to fit into space-constrained areas.
- Single piece 10-gauge steel framework is laser cut and formed to create a single-body frame construction, ensuring frame integrity.
- **Tight tolerance belting** and our unique snap-out sealed tail assembly provide for a quick belt change (less than 5 minutes) that is normally achieved without having to remove the drive packages or side rails.
- **Fixed angles ranging from 30° to 90°** minimize the number of required components, reducing costs as well as providing an industry best load carrying capacity.
- **High tensile strength cleated belts** offer superior strength-to-weight ratio and are available in various styles and heights. Cleats are always high frequency welded to customer desired spacing and never glued to the top surface of the belt.
- All components in our conveyors are produced on state-of-the-art manufacturing equipment.

Tail Assembly

- **Single point belt tension** is achieved through a snap-in eccentric tail assembly designed to pull through the natural elongation characteristics of the belt and provide quick and easy belt change capacity.
- **Crowned sealed tail assembly** is designed to promote excellent belt tracking and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the tail assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Grease fitting design in the tail assembly allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed tail assembly, providing optimal conditions to move the heaviest loads in low profile conveyors.
- Eccentric tracking bushing allows for single point tracking control at the idler end of the conveyor.

Drive Assembly

- **Straight knurl design** used to prevent premature wear on the carcass of the belt and still provide superior grip to overcome start-up inertia.
- **Crowned sealed drive assembly** designed to promote superior belt tracking, and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the drive assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Discreet needle fitting lubrication points in each bearing housing allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed bearing assemblies that are piloted on body fitted studs, providing optimal conditions to move the heaviest loads in low profile conveyors.
- **Threaded tracking adjustment points** provide simple responsive belt tracking that retain settings, even during belt removal.
- Drive pulley is available in solid output design and dual output design.

Corrugated Sides

- Multiple cleat sizes and styles available. See page 81, Step 5 for options.

Z Track

- **Patent pending Z Track™** is a unique design of the angle idler assembly that offers users a way to gain control over belt tracking at the angles of incline or decline.
- **Z Track™** adjusts rapidly for belt installation and tracking adjustments at the angles of incline or decline and locks in the tracking setting to ensure long-term performance.
- **Z Track™** components are precision manufactured and produced as a pressed, sealed-for-life assembly that is well-guarded to avoid dangerous pinch points at the angles of incline or decline.
Specifications

- Width 8” to 24”
- Length 54” to 240”
- Profile 1.89” high
- Drive Pulley 1.31” Diameter
- Load Carrying Capacity to 125 lbs.*
- Speed Range up to 225 fpm
- Multiple cleat heights available

*See Technical Data on page 79

Overview Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belt Width</td>
<td>6.13</td>
</tr>
<tr>
<td>Angle°</td>
<td>1.89</td>
</tr>
<tr>
<td>Shaft Length</td>
<td>1.00</td>
</tr>
<tr>
<td>Dia.</td>
<td>.50</td>
</tr>
<tr>
<td>Key</td>
<td>1/8</td>
</tr>
</tbody>
</table>

Note: As in all industries, technical specifications will change with technology updates. Please contact factory or see www.qcindustries.com for the most up-to-date drawings.
Features & Benefits

Conveyor

- **Low profile design** provides tight product transfers and the ability to fit into space-constrained areas.
- Single piece 10-gauge steel framework is laser cut and formed to create a single-body frame construction, ensuring frame integrity.
- **Tight tolerance belting** and our unique snap-out sealed tail assembly provide for a quick belt change (less than 5 minutes) that is normally achieved without having to remove the drive packages or side rails.
- **Fixed angles ranging from 30° to 90°** minimize the number of required components, reducing costs as well as providing an industry best load carrying capacity.
- **High tensile strength cleated belts** offer superior strength-to-weight ratio and are available in various styles and heights. Cleats are always high frequency welded to customer desired spacing and never glued to the top surface of the belt.
- All components in our conveyors are produced on state-of-the-art manufacturing equipment.

Tail Assembly

- **Single point belt tension** is achieved through a snap-in eccentric tail assembly designed to pull through the natural elongation characteristics of the belt and provide quick and easy belt change capacity.
- **Crowned sealed tail assembly** is designed to promote excellent belt tracking and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the tail assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Grease fitting design in the tail assembly allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed tail assembly, providing optimal conditions to move the heaviest loads in low profile conveyors.
- Eccentric tracking bushing allows for single point tracking control at the idler end of the conveyor.

Drive Assembly

- **Straight knurl design used to prevent premature wear** on the carcas of the belt and still provide superior grip to overcome start-up inertia.
- **Crowned sealed drive assembly** designed to promote superior belt tracking, and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the drive assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Discreet needle fitting lubrication points in each bearing housing allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed bearing assemblies that are piloted on body fitted studs, providing optimal conditions to move the heaviest loads in low profile conveyors.
- **Threaded tracking adjustment points** provide simple responsive belt tracking that retain settings, even during belt removal.
- Drive pulley is available in solid output design and dual output design.

Images of conveyor and Z Track assembly
Specifications

- Width 8” to 24”
- Length 54” to 240”
- Profile 1.89” high
- Drive Pulley 1.31” Diameter
- Load Carrying Capacity to 125 lbs.*
- Speed Range up to 225 fpm
- Multiple cleat heights available

*See Technical Data on page 79

Overview Dimensions

Note: As in all industries, technical specifications will change with technology updates. Please contact factory or see www.qcindustries.com for the most up-to-date drawings.
Features & Benefits

Conveyor

- **Low profile design** provides tight product transfers and the ability to fit into space-constrained areas.
- Single piece 10-gauge steel framework is laser cut and formed to create a **single-body frame construction**, ensuring frame integrity.
- **Tight tolerance belting** and our unique snap-out sealed tail assembly provide for a **quick belt change** (less than 5 minutes) that is normally achieved without having to remove the drive packages or side rails.
- **Fixed angles ranging from 30° to 90°** minimize the number of required components, reducing costs as well as **providing an industry best load carrying capacity**.
- **High tensile strength cleated belts** offer superior strength-to-weight ratio and are available in various styles and heights. Cleats are always **high frequency welded** to customer desired spacing and never glued to the top surface of the belt.
- All components in our conveyors are produced on **state-of-the-art manufacturing equipment**.

Tail Assembly

- **Single point belt tension** is achieved through a **snap-in eccentric tail assembly** designed to pull through the natural elongation characteristics of the belt and provide quick and easy belt change capacity.
- **Crowned sealed tail assembly** is designed to promote excellent belt tracking and is equipped with superior **needle bearings with seals** that are filled with high performance grease.
- **Thrust washers** designed into the tail assembly provide axial float, which allows the assembly to move with the natural camber of the belt and **protect bearings against off-center load conditions**.
- Grease fitting design in the tail assembly allows for lubrication of bearings while the conveyor is running, resulting in **zero down time during lubrication**.
- **Precision bearing alignment** is guaranteed within the pressed tail assembly, providing optimal conditions to **move the heaviest loads** in low profile conveyors.
- **Eccentric tracking bushing** allows for **single point tracking control** at the idler end of the conveyor.

Drive Assembly

- **Straight knurl design used to prevent premature wear** on the carcass of the belt and still provide superior grip to overcome start-up inertia.
- **Crowned sealed drive assembly** designed to promote superior belt tracking, and is equipped with superior **needle bearings with seals** that are filled with high performance grease.
- **Thrust washers** designed into the drive assembly provide axial float, which allows the assembly to move with the natural camber of the belt and **protect bearings against off-center load conditions**.
- Discreet needle fitting lubrication points in each bearing housing allows for lubrication of bearings while the conveyor is running, resulting in **zero down time during lubrication**.
- **Precision bearing alignment** is guaranteed within the pressed bearing assemblies that are piloted on body fitted studs, providing optimal conditions to **move the heaviest loads** in low profile conveyors.
- **Threaded tracking adjustment points** provide simple responsive belt tracking that retain settings, even during belt removal.
- Drive pulley is available in **solid output design** and **dual output design**.

Z Track

- **Patent-pending Z Track™** is a unique design of the angle idler assembly that offers users a way to **gain control over belt tracking at the angles of incline or decline**.
- **Z Track™** adjusts rapidly for belt installation and tracking adjustments at the angles of incline or decline and **locks in the tracking setting** to ensure long-term performance.
- **Z Track™** components are precision manufactured and produced as a **pressed, sealed-for-life assembly** that is well-guarded to avoid dangerous pinch points at the angles of incline or decline.

- **Multiple cleat sizes and styles available**. See page 81 Step 5 for options.
- **Corrugated sides available with 1 inch cleats**.

QC Industries 513.753.6000
Selecting the Frame Arrangement

1. Choose an infeed height
2. Choose an infeed length (if Z or L) in 6” increments
3. Choose a discharge height
4. Choose a discharge length (if Z or R) in 6” increments
5. Determine rise (the difference between the discharge and infeed heights) in inches
 \[\text{rise} = 2a - 1a \]
6. Select the angle and enter the constant from the table below
 \[\begin{array}{|c|c|c|c|c|c|} \hline \text{Angle} & 30^\circ & 45^\circ & 60^\circ & 75^\circ & 90^\circ \\ \text{Constant (K)} & .5 & .7 & .87 & .97 & 1 \\ \hline \end{array} \]
7. Determine the last frame section length
 \[\text{length} = \frac{(\text{rise} / \text{K}) + 2}{6} \]
8. Choose a frame length in 6” increments
9. Recalculate discharge height
 \[\text{new discharge height} = \left(\frac{(\text{last frame section length} - 2) \cdot \text{K}}{6}\right) + 1a \]

Example

1a ________ 12”
1b ________ 24”
2a ________ 48”
2b ________ 18”
3 ________ 36”
45° 4 ________ .7
54” 5 ________ 54”
48” 2a ________ 48.4 (Revised)

Key
- a = a frame length
- b = b frame length
- c = c frame length
- y = rise
- x = run
- A° = angle
- Q = overall length

Example for Z
For a Z: \[Q = (A + X + C) - 6 \]
For an L: \[Q = (A + X) - 4 \]
For an R: \[Q = (B + X) - 4 \]

To Determine the Conveyor Floor Length Run*

1) Solve for \(X \)
 \[X = \sqrt{b^2 - y^2} \]
2) Solve for \(Q \)
 \(Q \) =整体长度
 \(Q \) = 出口长度

Example for Z
1) \[\sqrt{54^2 - 36^2} = 40.25 \]
2) \[\begin{array}{c} 24 + 40.25 \\ + 18 \\ - 6 \end{array} = 76.25 \]
All applications require certain performance characteristics from the conveyor. QC Industries has developed a sizing system that condenses these parameters into a common factor called Equivalent Load. For instance, a conveyor application that is carrying a 5 lb. load up an incline is required to move a load equivalent to more than merely the 5 lbs. of product placed upon the belt.

Please follow the 3 steps below to determine the Equivalent Load for your application. These results will then be used to properly size the torque requirement for the gearmotor arrangement. (pages 86-89).

1. Nominal Load

Enter the load (in pounds) that the conveyor must carry on Line 1.

Use Figure 79-A to cross-reference the load calculation with the conveyor’s load carrying capacity; drive pulling or drive pushing.

Example: Product is a box weighing 2 lbs. There will be 25 boxes on the conveyor at any one time. 2 lbx x 25 = 50 lb. load. Conveyor width is 12 inches, which is capable of carrying 125 lbs. pulling. (Ref. Figure 79-A)

2. Incline/Decline [Factor] x [Load] = 2. ____

These applications utilize an incline or decline. Choose a factor from Figure 79-B based upon the angle of incline/decline, then multiply that factor by the total nominal load from Line 1 above. Enter the result on Line 2.

Example: 50 lb. (nominal load) x 2.3 (45° factor) = 115 lb. load equivalent

3. Frictional Load

All conveyors have a certain amount of friction that must be factored into the load. To determine how much additional load must be factored in, either add 4 to the conveyor’s width, then multiply by 6, or simply choose the value from Figure 79-C. Enter the result on Line 3.

Example: 4 + 12 (Conv Width) x 6 = 96 lb. load equivalent (Ref. Fig. 79-C)

Equivalent Load SUM (1 thru 3) _________ lbs.

Write down the equivalent load on the application data sheet (found in the back of the catalog). The equivalent load is needed to properly size a gearmotor for the conveyor. (Ref. Gearmotors pages 86-89)

Example: 50 lbs. (Step 1) +115 lbs (Step 2) + 96 lbs (Step 3) = 261 lbs Equivalent Load

Next, proceed to the next page to construct the belt part number.
125 Z Series

How to Order

Step 1

<table>
<thead>
<tr>
<th>Series</th>
<th>Drive Type</th>
<th>Construction</th>
<th>Frame</th>
<th>Frame Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 125</td>
<td>E = End Drive</td>
<td>S = Standard</td>
<td>B = 1.81” Powder Coat (Beige) E = 1.81” Stainless Steel</td>
<td>Z = Z Frames R = R Frames L = L Frames</td>
</tr>
</tbody>
</table>

Step 2

Widths

<table>
<thead>
<tr>
<th>Width</th>
<th>Order Code</th>
<th>A - Maximum Part Width</th>
<th>B - Maximum Part Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>8”</td>
<td>08</td>
<td>4.20”</td>
<td>3.56”</td>
</tr>
<tr>
<td>10”</td>
<td>10</td>
<td>6.20”</td>
<td>5.56”</td>
</tr>
<tr>
<td>12”</td>
<td>12</td>
<td>8.20”</td>
<td>7.56”</td>
</tr>
<tr>
<td>18”</td>
<td>18</td>
<td>12.92”</td>
<td>12.24”</td>
</tr>
<tr>
<td>24”</td>
<td>24</td>
<td>18.92”</td>
<td>18.24”</td>
</tr>
</tbody>
</table>

Note: The nominal width of the conveyor is not usable belt space. Please refer to the drawings and table to determine a width for your application. Option A shows a cleated belt with adjustable guide rails (see page 82) while option B shows a cleated belt with corrugated sidewall (see page 81).

Step 3

Lengths

<table>
<thead>
<tr>
<th>Frame Lengths for a, b, and c</th>
<th>18”</th>
<th>24”</th>
<th>30”</th>
<th>36”</th>
<th>42”</th>
<th>48”</th>
<th>54”</th>
<th>60”</th>
<th>66”</th>
<th>72”</th>
<th>78”</th>
<th>84”</th>
<th>90”</th>
<th>96”</th>
<th>102”</th>
<th>108”</th>
<th>114”</th>
<th>120”</th>
<th>126”</th>
<th>132”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Code</td>
<td>018</td>
<td>024</td>
<td>030</td>
<td>036</td>
<td>042</td>
<td>048</td>
<td>054</td>
<td>060</td>
<td>066</td>
<td>072</td>
<td>078</td>
<td>084</td>
<td>090</td>
<td>096</td>
<td>102</td>
<td>108</td>
<td>114</td>
<td>120</td>
<td>126</td>
<td>132</td>
</tr>
</tbody>
</table>

Angle

<table>
<thead>
<tr>
<th>Angle for A°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>75°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Code</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
</tbody>
</table>

Example Length:

Note: Use the values determined on page 78.

Note: Total frame sections should not exceed 20’.

a + b + c <= 20’
How to Order (continued)

Step 4

<table>
<thead>
<tr>
<th>Drive Location</th>
<th>Drive Pulley Type</th>
<th>Tail Pulley Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1/2" Dia*</td>
<td>S</td>
</tr>
<tr>
<td>A</td>
<td>1/2" Dia*</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>1/2" Dia*</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Cap Solid Output Shaft</td>
<td>D</td>
</tr>
</tbody>
</table>

Step 5

Choose three digit belt ordering code

- **1/2" High Cleat**
- **3/4" High Cleat**
- **1" High Cleat**
- **2" High Cleat**
- **3" High Cleat**
- **2" High Angled Cleat**
- **1" High Corrugated Sidewall with 1" High Cleat**

Example: ZAG = 1" Cleat Height

Example: ZAE ZAF ZAG ZAI ZAK ZAJ ZAH*

*Max. incline/decline angle for corrugated sidewall 60°

Step 6

Determine the Number of Cleats

1. **Determine endless belt length (Solve for N)**
 \[(a + b + c) \times 2 - 8 = N\]
2. **Determine number of cleats N/Desired spacing**
 Example: 160/6 = 27

Example:

- `a = 24", b = 36", c = 24"`
- Cleat spacing desired = 6"
- Overall belt length = \((24 + 36 + 4) \times 2 = 168 - 8 = 160\)
- Total # of cleats is 160/6 = 27 (rounded to nearest odd number)

Order Code Example: ZAG027

Example:

125 Z Series conveyor with powder coated frame, "Z" style, 12" wide with 24" horizontal section inclining at 45° for 54", changing to a horizontal section for 18". Drive is located in position "B" using a standard drive pulley and standard tail pulley. Belt is a standard urethane belt with (31) 1" high cleats on approximately 6" cleat-to-cleat centers.
The Adjustable Side Rails are used when a guide is required to run the length of the conveyor. Adjustable guide rails are available in 1", 2", and 3" heights. The 2" and 3" guide may be used in conjunction with the Flared Sides, End Stop and Hopper (sold separately - reference page 83).

To Order:

- **Z**
 - 1" Z-0281-ZA aaa bbb ccc
 - 2" Z-0282-ZA aaa bbb ccc
 - 3" Z-0283-ZA aaa bbb ccc

- **L**
 - 1" Z-0281-LA aaa bbb
 - 2" Z-0282-LA aaa bbb
 - 3" Z-0283-LA aaa bbb

- **R**
 - 1" Z-0281-RA aaa bbb
 - 2" Z-0282-RA aaa bbb
 - 3" Z-0283-RA aaa bbb

Example: Z-0281-ZB0360720018

1" high guide assembly for a 30° Z style conveyor that has a 36" infeed, 72" rise, and 18" discharge

Part Number Key

- **A** = Angle
 - B = 30°
 - C = 45°
 - D = 60°
 - E = 75°
 - F = 90°

- **a.b.c** = Frame Sections
 - aaa = a Section Length
 - BBB = b Section Length
 - CCC = c Section Length

*Not necessary for R or L conveyors

When the end user requires a conveyor with corrugated sidewall belting and a flared side, end chute or hopper, this guide rail is needed. It provides a 2" high side rail and the necessary mounting to support the flared sides, end chutes and hopper (sold separately - reference page 83). The guide rail incorporates a 2-axis adjustment that allows raising the side rail above the corrugated sidewall, providing a precise "drop zone" into the cleat pocket.

To Order:

- **Part Number:**
 - 125-0282-LLL-S*
 - 2" high 2-Axis Adjustable Guide Rail

*The guide rail length should equal the length of the flared side rail, which is ordered separately (reference page 83). The guide rail is only required on the infeed frame a-section (reference conveyor ordering - page 80).
Flared Side Rails are ideal for applications that require a “drop zone” wider than the width of the conveyor. The flared side rails attach to the 2-Axis Adjustable Guides or the Infeed Guide rails, sold separately and shown on page 82.

To Order:
- **Z-1004-012** 12” length
- **Z-1004-018** 18” length
- **Z-1004-024** 24” length
- **Z-1004-030** 30” length
- **Z-1004-036** 36” length
- **Z-1004-042** 42” length
- **Z-1004-048** 48” length

Example:
(1) **Z-1004-024**
A set of 24” long flared side rails

Note: Flared sides must be at least 6” shorter than the frame section length.

End Stops are used in conjunction with the Flared Side Rails. Stops are adjustable down the length of the Flared Rail and include a UHMW flap to help prevent parts from dropping off the end of the conveyor.

To Order:
- **Z-0234-08**
- **Z-0234-10**
- **Z-0234-12**
- **Z-0234-18**
- **Z-0234-24**

*Note: Use the part number that contains “CSW” when your conveyor utilizes a Corrugated Sidewall belt material. (Belt ordering code: ZAH)

Example:
Z-0234-12
One end stop for a conveyor without a corrugated sidewall belt

Hopper assemblies are created by ordering (2) End Stops. The stops can be easily placed anywhere along the length of the flared rails to create a hopper of varying size.

To Order:
Order a quantity of (2) to make a hopper

Example:
Z-0234-12 (Quantity: 2)
Two end stops, which create a hopper for a conveyor without a corrugated sidewall belt

Flared Sides must be mounted to the 2-Axis Adjustable Guides sold separately on pg. 82.

End Stops must be mounted to flared sides as shown above. Flared sides sold separately.

Hopper must be mounted to flared sides as shown above. Flared sides sold separately.
To order:

Based upon the calculations performed on page 78, choose your infeed and discharge stands using the tables below:

Infeed Stand Legend

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Type*</th>
<th>Low TOB**</th>
<th>High TOB**</th>
<th>Width***</th>
</tr>
</thead>
<tbody>
<tr>
<td>2234</td>
<td>F or C-</td>
<td>9-</td>
<td>12-</td>
<td>WW</td>
</tr>
<tr>
<td>2234</td>
<td>F or C-</td>
<td>12-</td>
<td>15-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>15-</td>
<td>18-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>18-</td>
<td>21-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>21-</td>
<td>24-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>24-</td>
<td>27-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>27-</td>
<td>30-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>30-</td>
<td>33-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>33-</td>
<td>36-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>36-</td>
<td>39-</td>
<td>WW</td>
</tr>
</tbody>
</table>

*Feet or Caster **TOB = Top of Belt ***Nominal Conveyor Width

Example: 2234F-12-15-10
Aluminum stand with feet for 10" wide conveyor with infeed of 12" to 15"

Note:
Infeed stand legs with prefix 2234 extend beyond the conveyor framework.

Discharge Stand Legend

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Type*</th>
<th>Low TOB**</th>
<th>High TOB**</th>
<th>Width***</th>
</tr>
</thead>
<tbody>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>24-</td>
<td>27-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>27-</td>
<td>30-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>30-</td>
<td>33-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>33-</td>
<td>36-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>36-</td>
<td>39-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>39-</td>
<td>42-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>42-</td>
<td>45-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>45-</td>
<td>48-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>48-</td>
<td>51-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>51-</td>
<td>54-</td>
<td>WW</td>
</tr>
<tr>
<td>2233</td>
<td>F or C-</td>
<td>54-</td>
<td>57-</td>
<td>WW</td>
</tr>
</tbody>
</table>

*Feet or Caster **TOB = Top of Belt ***Nominal Conveyor Width

Example: 2233C-30-33-12
Aluminum stand with caster for 12" wide conveyor with discharge of 30" to 33"

Aluminum cross ties are used when infeed height is above 18". For heights below 18", use the Z cross brace (see page 85).

Part No. 125 - 0236 - LLL

To order:

Cross Ties - Available Lengths

<table>
<thead>
<tr>
<th>Inches</th>
<th>LLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>24"</td>
<td>024</td>
</tr>
<tr>
<td>36"</td>
<td>036</td>
</tr>
<tr>
<td>48"</td>
<td>048</td>
</tr>
<tr>
<td>60"</td>
<td>060</td>
</tr>
<tr>
<td>72"</td>
<td>072</td>
</tr>
<tr>
<td>96"</td>
<td>096</td>
</tr>
<tr>
<td>120"</td>
<td>120</td>
</tr>
<tr>
<td>144"</td>
<td>144</td>
</tr>
</tbody>
</table>

Enter length of cross ties needed into the “LLL” section above. A quantity of one includes (2) cross ties.

Note: Cross ties require customer to cut to length because of stand placement variations.

Example: 125-0236-024
Z Cross Braces are used when the conveyor’s infeed height is below 18”. When it is above 18”, use Aluminum Cross Tie (see page 84).

Specifications:
1) Z and R style conveyors: Y ≤ 36” (ref. drawing) Use the 18” Z Cross Brace
 Y > 36 and ≤ 54” (ref. drawing) Use the 36” Z Cross Brace
2) L style conveyors (all): Use the 18” Z Cross Brace

To Order:
Part Number:
- Z-0235-018 18” Z Cross Brace
- Z-0235-035 36” Z Cross Brace
Drive Sizing Technical Data

The equivalent load was determined in the conveyor technical data page (page 79). To choose a gear motor combination that works best for the application, the next step is to convert that equivalent load into the torque required and size a drive based upon its use. The user must know the belt speed (in feet per minute), service factor (determined below), and the duty cycle of the application. The steps below guide the user through this process. These steps will ultimately compare the torque required to move the load on the conveyor (Required Conveyor Drive Torque) and the torque the drive train is capable of producing (Supplied Drive Train Torque).

1. Calculate Required Conveyor Drive Torque (RCDT)

 Enter the equivalent load the drive must handle (from page 79). Divide this number by 6. The result equals the torque required for the application, or the required conveyor drive torque (RCDT). Enter RCDT on Line One.

2. Select Belt Speed & Enter Drive Train Torque (DTT)

 Choose the belt speed from page 89, and write down the drive train torque (DTT) for the selected speed. Please note that if you are choosing a top or bottom drive, you may use either a timing belt or a chain. The drive train torque is lower if using a timing belt. Enter the drive train torque on Line Two.

3. Select Service Class and Enter Service Factor (SF)

 Select a service class:
 - Class I - Moderate loads with chain and sprocket or direct drive
 - Class II - Moderate loads with belt and pulley

 Now select the service factor (SF) from Chart 86-A below based upon hours of operation per day and number of starts and stops per hour. Enter the result on Line Three.

4. Calculate Supplied Drive Train Torque (SDTT)

 Divide the drive train torque (DTT) from #2 by the service factor (SF) from #3. This result equals the supplied drive train torque (SDTT). Enter the result on Line Four.

5. Determine Functionality

 Compare Line 4 (the supplied drive train torque [SDTT]) to Line 1 (the required conveyor drive torque [RCDT]). If the SDTT is equal to or greater than RCDT, then you have selected the proper drive. SDTT ≥ RCDT. If not, then:
 - A) Slow down the belt speed
 - B) Choose a wider conveyor
 - C) Consult factory

 Proceed to the next page for instructions on how to use the remaining drive pages.

Example:

Equivalent load = 300 (per conveyor technical data page)
300 / 6 = 50.0 (RCDT)
50 FPM (From page 89 - heavy duty bottom drive - fixed speed)
87 inch lbs. of torque (DTT)
Class II (using timing belt on a bottom drive)
16 hours per day with (10) starts and stops (Service Factor is 1.7)
87 / 1.7 = 51.1 inch lbs. (SDTT)

RCDT = 50.8
SDTT = 51.1

51.1 ≥ 50.0 (Gearmotor assembly will provide adequate torque)
How to Use the Following Pages

The following pages contain information on types and locations of available QC drives, presented in a clear, concise manner. Simply follow the two-page spread from left to right, and note the steps listed here.

Step 1: Choose mounting arrangement & location

Step 2: If top or bottom drive mounting arrangement, choose timing belt or chain drive
Note: Each speed has two rows. The top row is timing belt driven, and the bottom row is chain driven.

Step 3: Choose speed

Step 4: Run drive sizing calculations listed on Page 86

Step 5: Choose voltage requirements

Step 6: Put together two part numbers, drive mounting package and gearmotor, by following from left to right.

Voltage Key

<table>
<thead>
<tr>
<th>Voltage</th>
<th>PH</th>
<th>Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>115VAC 1 PH</td>
<td>16</td>
<td>1.7</td>
</tr>
<tr>
<td>230/460 VAC 3 PH</td>
<td>16</td>
<td>1.7</td>
</tr>
<tr>
<td>200 VDC w/controller</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>90 VDC w/controller</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Mounting Arrangement

Drawings

Drive locations

Sizing information

Voltage

Step 1: Choose Mounting Arrangement & Location

Top or Bottom Drive

Notes:

- Arrangement
- Motor Part No.

Step 2: Choose Speed

Top or Bottom Drive

Combinations

- Prefix
- T or B
- S
- R
- 1J, 1G, 3J
- 3G1-J

Step 3: Choose Voltage Requirements

Voltage Key

1. 115VAC 1 PH
2. 230/460 VAC 3 PH
3. 90 VDC w/controller
4. 90 VDC w/o controller

Step 4: Run Drive Sizing Calculations Listed on Page 86

Motor Part Number Example:

M1-120-50-J-150

Step 5: Choose Voltage Requirements

Motor Part Number Example:

503-55-75-G-150

Step 6: Put Together Two Part Numbers, Drive Mounting Package and Gearmotor, by Following from Left to Right

Voltage Key

<table>
<thead>
<tr>
<th>Voltage</th>
<th>PH</th>
<th>Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>115VAC 1 PH</td>
<td>16</td>
<td>1.7</td>
</tr>
<tr>
<td>230/460 VAC 3 PH</td>
<td>16</td>
<td>1.7</td>
</tr>
<tr>
<td>200 VDC w/controller</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>90 VDC w/controller</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Torque

Motor Part Number Example:

M1-120-50-J-150

Sprocket/Timing Pulley Combinations

Motor Part Number Example:

503-55-75-G-150

Gear Reducer

Motor Part Number Example:

503-55-75-G-150

Horsepower

Motor Part Number Example:

503-55-75-G-150

Quarter Horse Industries

513.753.6000
125 Z Series

Side Drive

Note: This arrangement allows for the drive to be mounted on either side of the conveyor with the motor perpendicular to the drive pulley. Reference the drawings to the left for dimensional information. Reference the tables to the right for mounting package and gearmotor ordering information. The box immediately left shows the possible drive positions.

*For “A” and “B” dimensions, see table at bottom of page

Remote Drive

Note: 56 frame gear motors extend below gear box mounting plate and may require shimming

*For “A” and “B” dimensions, see table at bottom of page

Top Drive

*Note: This arrangement allows for the drive to be mounted above the conveyor belt, on either side of the conveyor, and with the motor perpendicular to the drive pulley. Reference the drawings to the left for dimensional information. Reference the tables to the right for mounting package and gearmotor ordering information. The box immediately left shows the possible drive positions.

*For “A” and “B” dimensions, see table at bottom of page

Bottom Drive

*Note: This arrangement allows for the drive to be mounted below the conveyor belt, on either side of the conveyor, and with the motor perpendicular to the drive pulley. Reference the drawings to the left for dimensional information. Reference the tables to the right for mounting package and gearmotor ordering information. The box immediately left shows the possible drive positions.

*For “A” and “B” dimensions, see table at bottom of page

Motor Dimension Chart

The motor can be rotated in 90° increments when attaching it to the gearbox. This allows the user flexibility when deciding where the motor capacitor and work box will be located.

<table>
<thead>
<tr>
<th>Motor Dimension Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>5.20</td>
</tr>
</tbody>
</table>
Side Drive Sizing Information

<table>
<thead>
<tr>
<th>FPM*</th>
<th>Torque (OTT) Inch Lbs.</th>
<th>Prefix</th>
<th>Mounting</th>
<th>Position*</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>120</td>
<td>M1-</td>
<td>S</td>
<td>1 or 3G</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>128</td>
<td>M1-</td>
<td>S</td>
<td>1 or 3G</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>132</td>
<td>M1-</td>
<td>S</td>
<td>1 or 3G</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>130</td>
<td>M1-</td>
<td>S</td>
<td>1 or 3G</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>128</td>
<td>M1-</td>
<td>S</td>
<td>1 or 3G</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>107</td>
<td>M1-</td>
<td>S</td>
<td>1 or 3G</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>82</td>
<td>M1-</td>
<td>S</td>
<td>1 or 3G</td>
<td>0</td>
</tr>
</tbody>
</table>

*Speeds vary up to +/- 4FPM

Remote Drive Sizing Information

<table>
<thead>
<tr>
<th>FPM*</th>
<th>Torque (OTT) Inch Lbs.</th>
<th>Prefix</th>
<th>Mounting</th>
<th>Position*</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>120</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>128</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>132</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>130</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>128</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>107</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>82</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
</tbody>
</table>

*Speeds vary up to +/- 4FPM

Fixed or Variable Speed

Example: M1-S3J0 (Side Drive Mounting)
Example: M1-R1G0 (Remote Drive Mounting)
Example: 253-15J (230/460V 3PH Gearmotor@40 FPM)

Voltage Key

- **1:** 115 VAC 1 PH
- **2:** 230/460 VAC 3 PH
- **3:** 230/460 VAC 3 PH
- **4:** 90 VDC w/o controller
- **5:** 90 VDC w/o controller

Voltage Information

- **115/230** Amp
- **230/460** Amp
- **DC Amp**
- **Face**

Voltage

- **Motor Part No. Example:** M1-T1J0-5M4025 (Top Drive Mounting Pkg w/Timing Belt)
- **Motor Part No. Example:** M1-S1J0
- **Motor Part No. Example:** 253-15J (230/460V 3PH Gearmotor@40 FPM)

Motor Part Number Example:

- **Prefix: M1-**
- **Position: T or B**
- **Suffix: GMtr. Sprkt or Conv Sprkt**
- **5M**

Motor Information

- **Motor Information**
 - **Motor Part No. Example:** 161-50J
 - **16:** 1.3,V,D-
 - **1.3,V,D-**
 - **G or J**
 - **1/6:** 3.6/1.9
 - **1.3/0.6**
 - **1.7**
 - **42C**

Motor Part Number

- **1052/230** Amp
- **230/460** Amp
- **DC Amp**
- **Face**

Motor Information

- **Motor Information**
 - **Motor Part No. Example:** 203-05J
 - **Prefix: M1-**
 - **Position: T or B**
 - **Suffix: GMtr. Sprkt or Conv Sprkt**
 - **5M**

Motor Information

- **Motor Information**
 - **Motor Part No. Example:** 831-10J (115v 4PH Gearmotor@100 FPM)
 - **50**

Motor Information

- **Motor Information**
 - **Motor Part No. Example:** 831-10J (115v 4PH Gearmotor@100 FPM)
 - **Prefix: M1-**
 - **Position: T or B**
 - **Suffix: GMtr. Sprkt or Conv Sprkt**
 - **5M**

Motor Information

- **Motor Information**
 - **Motor Part No. Example:** 831-10J (115v 4PH Gearmotor@100 FPM)
 - **Prefix: M1-**
 - **Position: T or B**
 - **Suffix: GMtr. Sprkt or Conv Sprkt**
 - **5M**

Notes:

1. ALL above gearmotors are UL and CSA approved
2. Torque values are based upon running torque
3. Inverter duty frequency rated motors are available in 1/2 HP. Add an ID to the end of the motor part number for the 230/460VAC 3ph motors only.
4. Please note that all inverter duty motors have a non-removable foot mount on them

See Drive Accessories pages (p. 90 & 91) for optional controllers, motor starters, e-stops, cords, switches, and plugs
Motor Controls

Standard DC Control

Specifications/Features:
- 115 V AC, 1 phase input, 90 V DC, 1/2 hp max output
- 230 V AC, 1 phase input, 180 V DC, 1 hp max output
- 30:1 speed range
- UL/ULc/CE
- NEMA 1 Enclosure
- Forward/Reverse switch, Run/Brake switch
- Min/Max & Accel/Decel settings

To Order:
- Part Number: 125-0054-01
- Standard NEMA 1DC Control
- Part Number: 125-0149-09
- Wiring: cords & plugs

*Includes 8’ cord from control to AC plug and 8’ cord from control to motor with male/female disconnects (wired).

Standard AC Control

Specifications/Features:
- 115 V AC, 1 phase input, 90 V DC, 1 hp max output
- 230 V AC, 1 phase input, 180 V DC, 2 hp max output
- 30:1 speed range
- UL/ULc/CE
- NEMA 4X Enclosure
- Speed adjustment potentiometer
- Forward/Off/Reverse switch
- Min/Max & Accel/Decel settings

To Order:
- Part Number: 125-0054-38
- NEMA 4X DC Control

Washdown DC Control

Specifications/Features:
- 115 V AC, 1/3 phase, 50/60 Hz input, 1 hp max output
- 10:1 speed range (when used with ID motor)
- UL/ULc/CE
- IP 20 Enclosure
- 3-digit LED display
- Forward/Reverse switch
- Run/Stop button, Accel/Decel buttons
- Carrier frequency selectable for quiet operation

To Order:
- Part Number: 125-0054-SC-11-05
- 115V AC, 1 phase input, IP20
- Part Number: 125-0054-SC-21-05
- 230V AC, 1 phase input, IP20
- Part Number: 125-0054-SC-23-20
- 230 V AC, 3 phase input, IP20
- Part Number: 125-0054-SC-43-10
- 460 V AC, 3 phase input, IP20

Washdown AC Control

Specifications/Features:
- 115/230 V AC, 1/3 phase, 50/60 Hz input, 1 hp max output
- 10:1 speed range (when used with ID motor)
- UL/ULc
- NEMA 4X Enclosure
- Speed adjustment potentiometer
- Run/Stop switch
- Carrier frequency selectable for quiet operation

To Order:
- Part Number: 125-0054-37
- NEMA 4X AC Control

Note: It is the responsibility of the end user to properly wire this controller to the gearmotor.
Motion Controls

Motor Starter

The Motor Starter is an overload protection that also provides a means of using a Remote E-Stop for safety. The starter is equipped with an undervoltage trip to protect against autostarting after the overload condition has been corrected. Also includes short circuit protection.

Specifications/Features:
- 115 V AC, 1 phase, 60 hz input, 1/2 hp max
- 230 V AC, 3 phase input, 1 1/2 hp max
- 460 V AC, 3 phase input, 1 1/2 hp max
- UL/CSA/CE
- Start/Stop buttons
- IP55 Enclosure

To Order:
Part Number:
- 125-0054-38-115 115 V AC, 1ph w/enclosure
- 125-0054-38-230 230 V AC, 3 ph w/enclosure
- 125-0054-38-460 460 V AC, 3 ph w/enclosure

Note: It is the responsibility of the end user to properly wire motor starter and e-stops

E-Stop Accessory

The E-Stop accessory is mounted directly to the Motor Starter enclosure, providing a means of stopping the motor for safety. It can be padlocked for servicing, and contains a start button for restarting the motor after the pushbutton has been released.

Specifications/Features:
- Turn to release
- UL/CSA/CE
- E-Stop can be locked out/includes start button
- IP55 Rated

To Order:
Part Number:
- ELECT-061 E-Stop Accessory for Motor Starter

Note: It is the responsibility of the end user to properly wire motor starter and e-stops

Remote E-Stop

The Remote E-Stop provides a means for locking out power to the motor for safety. It includes an IP65 enclosure and mounting bracket to allow the E-Stop to be mounted directly to the side of the conveyor frame.

Specifications/Features:
- Turn to release
- UL/CSA/CE
- IP55 Enclosure

To Order:
Part Number:
- ELECT-063-WBRKT E-Stop with enclosure

Note: Includes mounting bracket to mount to conveyor frame

Optional Cords, Plugs, & Switches

Heavy Duty Motor Options

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>125-0149-05</td>
<td>ON/OFF switch for 1 PH heavy duty motor</td>
</tr>
<tr>
<td>125-0149-06</td>
<td>FORWARD/REVERSE switch for 1 PH heavy duty motor</td>
</tr>
<tr>
<td>125-0149-07</td>
<td>8' cord and plug for 1 PH heavy duty motor</td>
</tr>
<tr>
<td>125-0149-09</td>
<td>8' cord and plug for 90VDC motor – see controller for details</td>
</tr>
</tbody>
</table>